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THE COUNTBACK METHOD FOR ANALYZING

SENSITIVITY DATA

Abstract

Sensitivity data are defined as involving two response categories,

with responses observed at different levels of some variable of interest.

The responses are taken to indicate sensitivity to the variable, and,

in this regard, may be labeled "positive" and "negative." Of particular

interest in analyzing sensitivity data is the estimation of the 50%

point, the level of the variable for which the two responses are equally

likely.

The countback method provides confidence limits for the 50% point

in the special (but important) case when only one response is observed

at each level. A lower bound on the confidence coefficient for these

limits can be given, assuming only independent responses and the exis-

tence of something like a 50% point. No specific model of response

probabilities is required, and the variable of interest need not even

be continuous.

To gain a greater understanding of the countback method, we use it

to analyze sensitivity data obtained in an experiment on the perception

of depth in pictures. Its performance is also studied in two artificial

situations, where the response probabilities can be specified exactly.

In the first of these, the probability of a positive response at

different levels is given by the cumulative logistic model. The second

situation is highly asymmetric, using the logistic model below the 50%
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point and an errorless model (the positive response probability set

equal to 1) above it.

For purposes of comparison, two asymptotically efficient estima-

tion methods, namely maximum likelihood and minimum X
2

, are also

applied to the cases described above. In the two artificial situations,

where actual confidence coefficients can be determined, both of these

methods fall short of their asymptotic performance levels.

The countback confidence limits, by contrast, perform at a sub-

stantially higher level than that given as a lower bound by the theory.

Moreover, the ability of conservatively chosen countback limits to

reject null hypotheses is quite adequate for the purposes of the

experiment mentioned earlier. Finally, a simple extension of the

countback method to data with more than one response per level is

discussed.

on the basis of these results, the countback method is seen as

taking a significant place among the previously existing methods for

analyzing sensitivity data.

Appendices are provided for those interested in statistical,

simulation, experimental, and historical details.
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THE COUNTBACK METHOD

SENSITIVITY

FOR ANALYZING

DATA

Consider the following experiments. (1) A human subject is asked

to observe very dim flashes of light. The intensity of the flash is

varied and the subject reports, for each flash, whether or not he was

able to see it. (2) A weight is dropped from different heights onto

several samples of the same explosive. In each case, it is recorded

if the sample exploded. (3) Insects of a given species are exposed to

different concentrations of an insecticide. Each is observed to see if

it dies as a result. (4) Several different dilutions are made from a

sample of soil. The presence or absence of a species of protozoan in

a fixed amount of each dilution is determined after exposure to a

suitable medium.

These are examples of what may be called the sensitivity experiment.

This is most clearly an apt label for the first three. They are aimed,

respectively, at determining the sensitivity of the eye to light, of

explosives to impact, and of insects to insecticide. In each, a two-

category response is examined to see the effect of different levels of

the variable of interest. Each has the goal of estimating the value

of the variable for which the two responses will occur with equal

probability. This value (which will be referred to as the 50% point)

is taken in these examples to be a good indication of sensitivity.

It should be noted that this probabilistic approach is an essential

feature of the sensitivity experiment, and for good reason. Only rarely

do sensitivity data indicate the existence of a critical level, with



one response always observed below and the other always observed above

it. Consequently, the simple notion of a critical level had to be

generalized, and the 50% point is the most widely accepted generalization.

In the fourth experiment, a model is used to estimate directly the

number of organisms in the original sample, but this value is a simple

function of the dilution at which 50% of the exposed mediums will be

sterile. In the same way, the first experiment may be concerned with

the minimum number of photons necessary for vision, rather than the

intensity which produces a visible flash half the time. Again, these

two are directly related when an appropriate model is introduced.

Thus, the general sensitivity problem, as it has been called, is

to estimate a 50% point, or some function of it, from two-category

response data.

There is some latitude available in designing a sensitivity

experiment. In many cases, for instance, the experimenter is free to

choose the levels of the variable as well as the number of observations

at each level. He may even be free to make these decisions as the

experiment progresses.

In general, the choice of design is closely related to the contem-

plated analysis. Consider three different methods of analysis. One

widely adopted method, known as probit analysis (Finney, 1952), works

well when a large number of observations is made at each of a limited

number of closely spaced levels, particularly if these happen to cover

the 50% point. Fisher's (1922) approach to dilution series is suggested

for use with a moderate number of dilutions and relatively few observa-

tions at each. It requires, however, that successive dilutions be in

'zo
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a constant ratio throughout the series. The up-and-down method of

Dixon and Mood (1948) requires the levels to be chosen in advance, but

lets the number per level be determined by the experiment. As they

describe it for testing the sensitivity of explosives to impact, if a

sample tested at one level explodes, a new sample should be tested at

the next lower level. If there is no explosion, the new test should be

made at the next higher level. (Examples of the use of these methods

are listed following the Bibliography.) Finney (1964, esp. pp. 551-553)

provides recommendations on additional methods, not mentioned above.

There will, of course, be many legitimate examples of the sensi-

tivity problem for which none of the above experimental designs is

desirable, or even possible. A particularly striking case is a variation

of the insecticide experiment described above. If the researcher is

concerned with the effective level of insecticide involved, he may

measure the quantity in each insect at the end of the experiment. Thus,

he has no more than a crude control over the levels of the variable,

and only a small chance of making more than one observation at any of

the levels attained. In such a case, one of the methods mentioned

above, namely probit analysis, can still be applied (see Bliss, 1938;

Finney, 1947, 1952, sec. 43), but the results should be treated with

caution, as we will see later.

More generally, a sensitivity experiment of a preliminary nature

may require wide coverage with a minimal number of observations involved.

Consequently, a method of analysis specifically designed to deal with

one observation at a level and allowing arbitrarily spaced levels would

fill a significant gap left open by the collection of techniques

referred to above.



There is another limitation on the previously mentioned approaches,

namely that the variable of interest is assumed to be continuous. This

makes it easy to assume a continuous effect of the variable on the

response probabilities, and, with a little more effort, the existence

of an exact (and unique) 50% point. There is, however, nothing in the

design of the sensitivity experiment that prohibits the use of an

essentially discontinuous variable. Since only discrete values are

used, all that is required is for the variable to have a progressive

effect on response probabilities. One example from psychology is an

experiment on memory span. The subject hears a list of digits read and

is asked to repeat the list. The variable here is the length of the

list. The two possible categories of response are a repetition and an

error. In this experiment, it is very unlikely that a 50% point

exists. Nonetheless, something like a 50% point would be very useful

in summarizing the data.

Since the lengths are labeled numerically, it would be easy to

pretend that a continuous variable exists, and then apply some standard

technique. Statements such as "the subject was able to repeat a list of

6.76 digits with probability .5" could then be expected to follow

routinely. There is, however, an approach which does less violence to

one's sensibilities, namely, the use of confidence limits.

An important part of the sensitivity problem is indicating the

quality of the estimate. An accepted means of so indicating is with

confidence limits. Confidence limits are calculated from the data in a

way which guarantees the value being estimated will fall between them

with some given probability (.95 is a favorite value) upon successive

,'""1-7"7-17'77,770-7717r777,-11-""Cii--"' 17>1 .-11"77-71-4,;-NL 0,,,,'F'777571"""7,77mm","7
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repetitions of the experiment. This does not mean that the true value

has different locations with different probabilities. It is considered

to be fixed. Instead, it means that the confidence limits change with

each repetition of the experiment and that 95% of the time (for 959

limits) the true value will fall between them. Moreover, this guarantee

holds regardless of the location of the true value.

Even when there is no true value, as in the last example, it may

still be possible to find modified confidence limits. Suppose, on the

basis of memory span data we have collected, we choose two list lengths,

L and U . L is chosen so that it is likely the subject could repeat

lists of length L or shorter more than half the time. U is chosen so

that it is unlikely the subject could repeat lists of length U or longer

more than half the time. If "likely" and "unlikely" were formalized

satisfactorily, L and U could then be considered as confidence limits

for the 50% point, even though no 50% point can be realized. A relevant

statement about the experiment then might be: "With probability .95,

errors predominate for lists of ten or more digits, while a repetition

is the more likely event with lists of three or fewer digits."

A framework has now been provided for a new approach to the sensi-

tivity problem. This approach, to be described below, is designed to

handle one observed response per level of a possibly discrete variable,

and to deal directly in terms of confidence limits for the 50% point.

For reasons which will become clear, we call it the countback method.

Returning to the first example, suppose that one response has been

obtained for each of several intensities of the light flash. The first

step is to single out the lowest level at which the flash was seen and



the highest level at which it was not. These will be referred to as the

low and high levels.

At this stage, we could take the average of these two levels and

use the result as an estimate of the 50% point. This technique was first

described by Gaddum (1933). It has since been called the method of

extreme effective doses. As he proposed it, however, there are drawbacks

which severely limit its use. Most importantly for this discussion, there

is no way given to describe the quality of the estimate. In addition,

the estimate may be badly biased unless the levels used are symmetrically

related to the response probabilities. These facts led Finney (1964)

to advise that the method of extreme effective doses never be used.

While rejecting the estimate, one should not ignore the importance

of the low and high levels. As discussed above, there is some value in

bypassing the estimation of the 50% point entirely and going directly to

a treatment of quality, via confidence limits. It is in this approach

that the low and high levels play a more appropriate role. In fact, for

any integer c , we may take L to be c levels below the low level

and U , c levels above the high level. (Fig. 1 provides an example

of this procedure with c = 4.)

There is one exception to this rule which is worth mentioning now.

This is the case of perfectly consistent data. Here there is no overlap

between the two responses, so that the high level occurs one step below

the low level. In this situation, we take extra care and use the level

c + 1 steps below the low level for L , as well as c + 1 steps above

the high level for U . To put it another way, L should be the level

c steps below the high level and U , c steps above the low level.
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These are the confidence limits as determined by the countback

method. Now, what is it we're confident of as regards these limits'

We are confident that, for intensities of level L and below, the

probability that the subject will see a flash is less than .5; while,

for those of U and higher, this probability is greater than .5. Next,

what proportion of the time will our confidence be misplaced? The degree

of confidence associated with L and U cannot be specified exactly

without introducing restrictive assumptions. With very modest pre-

requisites, however, it can be proved that this value will always be

greater than 1 - 2c . Thus, as noted in Figure 1, counting four

levels away from the low and high levels guarantees a confidence of

more than 1 - 2
-4

= 15/16 = .9375. Table 1 shows how this value

increases with c .

While the prerequisits for this result may be modest, it is

important to make them explicit. The first requirement is that the

observations be statistically independent. This is a standard assumption

which allows us to write the probability of any set of responses as the

product of the individual response probabilities. Intuitively, it means

that response probabilities are not influenced by previously observed

responses, and that no common influence acts on any group of responses.

The second requirement for the countback method is that there be

something like a unique 50% point. Specifically, for all levels of the

variable above some point, one response (henceforth referred to as the

positive response) should predominate. For all levels below, the other

(negative) response should be more likely. It is not, of course,

necessary for the experimenter to know where this point is, but merely



Table 1

Lower Bound on Confidence for Countback

Limits as a Function of c the Number

of Levels Counted Back

Levels
Counted Back Lower Bound

c 1 - 2-c

1 .5000

2 .7500

3 .8750

4 .9375

5 .9688

6 .9844

7 .9922

8 .9961

9 .9980

to .9990
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that such a point exists. Intuitively, one may see this as requiring

that the levels of the variable be ordered in a way which is maningfUl

for the response being studied and that the variable exert a significant

influence on the response.

Intuition has been made explicit for both these prerequisites

because it is contemplated that they should be satisfied at an intuitive

level. A satisfactory test of either assumption could probably not be

made without considerably more data collection than the basic experi-

ment would require. Thus, it is the responsibility of the experimenter

who uses the countback method (or any of the others mentioned, for that

matter) to design his experiment in such a way that these two assumptions

may reasonably be made in his case.

Taken together, the levels of the variable actually used in an

experiment may be referred to as the experimental series. Once a

potential user of the countback method has satisfied the two general

prerequisites discussed above, he must still select an experimental

series. The series should have two characteristics for satisfactory

results using this technique. First, levels at the high end of the

series should evoke a positive response almost invariably, while those

at the low end should be similarly related to negative responses.

Another way of saying this is that the experimental series should cover

the range for which either response is a distinct possibility.

Second, the experimental series should cover this range reasonably

well. In particular, once a confidence level (and the corresponding c )

has been chosen, it would be foolish to use an experimental series whose

length was less than 2c , and a length of 5c , as in Figure 1, is



acceptable, but not at all extreme. (Here, length refers to the number

of levels in a series.)

Both of these recommendations are acceptable at an intuitive level.

There is, however, a technical consideration which makes them important.

Going back to Figure 1, suppose that a positive response has been

obtained for intensity number 3. Then, with c = 4 , we would run out

of levels while counting down to locate L . In such a situation, the

theory stipulates that L be set at an artificial absolute lower limit

for the variable, designated, for instance, by -co . The idea is that

we have insufficient experimental information to locate L and we

indicate this by writing L = -co . At this value, L is considered

to be a perfect (though useless) lower confidence limit. Similar

remarks apply to U and the arbitrary upper limit, +CO.

This strange situation is a result of the fact that practically

nothing has been assumed about the response probabilities at different

levels. Consequently, only a reasonable amount of consistent data can

establish nontrivial locations for L and U . The two recommendations

made earlier simply put this observation in concrete terms.

This is the countback method for constructing confidence limits.

Now that we know how to use it, as well as the minimum to expect from it,

the next step is to see how the countback method actually works. For

this purpose, a few interesting examples have been selected and will be

studied in some detail.

Earlier it was noted that other approaches were not designed to

handle data taking the form of one observation per level. Nonetheless,

one of these methods, probit analysis, can be used with such data. More
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generally, the principle underlying probit analysis, namely maximum

likelihood, can be applied to the case of one observation per leve3.

As a consequence, some form of comparison between the countback method

and traditional approaches is possible. This comparison is valuable for

putting the countback method in perspective and is made in the forth-

coming examples.

To use maximum likelihood, a specific model relating response proba-

bilities to levels of the variable must be assumed. A model which is

often used (in probit analysis and the up- and -down method, for instance)

is the Gaussian, or normal cumulative distribution. In the present case,

the similar, but computationally simpler, logistic cumulative distri-

bution was used instead. Formally, then, the probability of a positive

response at level x was assumed to be (1 + exp(-1'.7a(x - b))) -1

(This form was adapted from that used by Lord and Novick, 1968, p. 400.)

Here a and b are parameters to be estimated (via maximum likelihood)

from the data. One of the parameters, b , is the 50% point and is of

primary interest while the other, a , is related to the slope of the

function when x = b and is used mainly to provide a better fit to the

data.

One of the primary virtues of maximum likelihood estimates is that

they are asymptotically efficient and normally distributed. In practical

terms, asymptotic efficiency means that no other estimates are better,

given that the sample of data used is sufficiently large.

Moreover, normally distributed estimates allow for a straightforward

way of obtaining confidence limits for the parameter they are estimating.

Upper and lower 95% limits, for example, are found by adding to and

?MI
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subtracting from the estimate 1.96 times the standard deviation of the

estimate. (In our case, we use the standard deviation of an efficient

estimate, and this gives us, asymptotically, the best confidence limits

for the parameter.)

These limits, of course, are only valid asymptotically and their

actual confidence is not specified for small samples. This is an

important part of the reason that maximum likelihood has not been con-

sidered applicable to sensitivity data with one observation per level.

Consequently, we should not be surprised by the behavior of these limits

in the examples to be considered.

In comparing maximum likelihood and the countback method, two

artificial situations and one informal experiment were used. The experi-

ment was one in which perception of depth in pictures was studied. It

should be noted that this experiment was performed primarily to obtain

realistic sample data. Many of the controls essential to a serious study

of the problem were ignored and the results should be seen in that light.

Subjects were shown pictures (such as the one in Fig. 2) of two

rectangular panels at different angles to the picture plane and were

asked to indicate which of the panels appeared wider. The design of the

experiment provided that each subject would see four experimental series

(randomly interspersed) and make one observation per level in each. A

series was comprised of pictures showing a standard panel, with fixed

width and slant, and a comparison panel with fixed slant and one of 20

widths. Thus, each series had 20 levels. The 50% point of such a series

is the width at which the comparison appears as wide as the standard.

Having four series allowed estimation of the 50% points for four different



Fig. 2. Example of the pictures viewed by subjects in the experiment.
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pairs of slants with each subject. There were 17 subjects, two of whom

were used twice, so this experiment provided a total of 76 data sets of

20 observations each on which to apply the two methods of analysis.

Using maximum likelihood, nominal 95% and 99% confidence limits

were obtained for each data set. Using the countback method, limits

were found for c = 1, 2, and 3. These limits are guaranteed to contain

the 50% point with probabilities greater than .5, .75, and .875, respec-

tively.

One way of comparing these results is to look at the lengths of the

confidence intervals obtained. These are given by U - L . To give some

idea of the scale, it is worth noting that adjacent levels (widths measured

on the plane of the picture) differed by .05 inches throughout all four

series used. The median length of all 95% confidence intervals provided

by maximum likelihood is .1721 inches, comparable to the median length

of intervals from the countback method with c = 1 , which is .15 inches.

Moreover, 99% maximum likelihood intervals have a median length of .2262

inches, which compares with .25 inches for the countback method with

c = 2 . The median length for c = 3 is .35 inches (see Table 2).

In evaluating these comparisons, it should be realized that most of

the data from this experiment were quite "good." That is, most of the

data sets were either perfectly consistent or involved only a single

reversal of positive and negative responses. Thus, our conclusions

should be limited to this extent. For more complicated patterns of

responses, maximum likelihood generally improves somewhat, relative to

the countback method. For instance, consider the data in Figure 1. When

c = 1 L is 6 and U is 12. The 95% limits are just above 6 and just

below 11. For c = 2 , L becomes 5 and U 13. The 99% limits are

7,777"cF.Prv",
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Table 2

Median Lengths of the Confidence Intervals in

the Experiment, as Obtained by Maximum

Likelihood and the Countback Method

Maximum Likelihood Countback Method

95% .i721

99% .2262

c = 1 .1500

c = 2 .2500

c = 3 .3500

41,77-.4,1-7:77P^t-"*'"7"171177777'w..,-N-7 ,rr-r-rmllrrT
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just above 5 and just below 12. Thus, in this example, maximum likeli-

hood intervals are shorter by about one step in each case.

This improvement is particularly marked, of course, when counting

back goes beyond the range of the experimental series. On the other

hand, when maximum likelihood provides limits outside this range, strong

assumptions are necessary to justify these limits.

The data from this experiment also provide another possibility for

comparing the two methods. When the experiment was designed, the

hypothesis in mind was that most people see some depth in pictures, but

not to the extent that the cues of linear perspective would predict.

Thus, it was hoped that two hypotheses, which I shall call 2D and 3D,

could each be rejected for most of the subjects. In terms of the data,

these hypotheses predicted the location of 50% points for each of the

four series used. The 3D 50% points fell outside the range for all four

series, while the 2D 50% points were just outside (on the other side)

for two, and well within for the other two. The ranges were chosen this

way to provide an efficient use of the observations, on the assumption

that most of the people would produce 50% points quite different from

those for either 2D or 3D.

The hypotheses were meant to apply to the overall behavior of sub-

jects, rather than to their responses on each of the series separately.

Thus a criterion had to be chosen for deciding if either hypothesis

applied to a given subject. The hypotheses predict 50% points and the

data give rise to confidence intervals. If at least three of the four

predictions lay outside the corresponding intervals, the relevant

hypothesis was rejected. This was felt to be fairly stringent, while

allowing for some odd responses.

"i.17"411"77""' 4ridS5 17r,
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Applying this criterion to the data and using the four sets of

confidence limits mentioned earlier gave the following results (p:.e-

tending that there were 19 subjects, rather than 17 with two repeats).

The 95% limits of maximum likelihood rejected both 2D and 3D for 17

subjects, with one subject classified as a possible 2D and one as a

possible 3D. Expanding the limits to 99% resulted in two more subjects

classified as possibly 2D.

The countback method, with c = 1 , gave results almost identical

to those of 95% maximum likelihood. The only difference is that one

additional subject was possibly 3D. WYln c was set equal to 2, only

13 subjects were neither 2D nor 3D, with three possibly 2D and three

possibly 3D. The two 3D subjects not so classified by the 99% limits

were actually the same subject. Consequently, one could say there is

agreement to within one subject, both between 95% and c = 1 and

between 99% and c = 2 , maximum likelihood being more powerful than

the countback method in each case (see Table 3).

We can now look at two artificial situations for added information

about the two methods. The experiment allowed a study of the relative

lengths of the confidence intervals, as well as of the relative ability

to reject alternative hypotheses. An important question remains, how-

ever, as to the actual confidence coefficients associated with the limits

these two methods provide. (We have spoken of confidence coefficients

before, but without giving them a name. The confidence coefficient for

a set of limits is the probability that these limits contain the true

value: .95, for example, for actual 95% limits.) The countback method,

it will be remembered, states only an absolute lower bound for its

7 v 7,7v4A



Table 3

Results of Testing 2D and 3D Hypotheses with

Maximum Likelihood (ML) and Countback (CB)

Confidence Limits

Method Number of Subjects

95% va,

CB, c =

99% mr,

CB, c = 2

CB, c = 3

Possibly
2D

Not 2D
or 3D

Possibly
3D

1 17 1

1 16 2

3 15 1

3 13 3

3 12 4



confidence coefficients. Maximum likelihood, on the other hand, gives

coefficients based on large samples drawn from the population speci-

fied by its model.

For purposes of analysis, the main thing that distinguishes

artificial situations from actual experimental ones is that, in the

former, we choose the response probabilities and, thus, know them exactly.

Consequently, when we apply a method of analysis to an artificial situa-

tion, we know whether or not the assumptions of the method are being met.

One way of studying an artificial situation is using it to generate

artificial data. These data can be analyzed, confidence limits obtained,

and the limits can be checked to see if they actually contain the 50%

point (since we know what the 50% point is in an artificial situation).

Repeating this procedure for many sets of data generated in the same way

eventually provides a good estimate of how well the confidence limits

are working. Specifically, the proportion of times the limits contain

the 50% point is an estimate of the confidence coefficient for these

limits in this artificial situation. If the limits claim to have 95%

confidence, we hope the proportion would be close to .95.

Although the above approach is quite straightforward, there are

other ways of studying an artificial situation which are more satisfac-

tory when they can be used. For discussion of these and related topics,

the interested reader is referred to the Simulation Appendix.

The first artificial situation was designed to see how well each

method would fare when all the assumptions (except large sample size)

of our version of the maximum likelihood approach were met. Consequently,

the response probabilities for this situation were chosen according to
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the logistic model. In order to make the results of this analysis

easily comparable with those of the experiment, the same 2n levels of

the variable as appeared in two of the experimental series were used.

Specifically, the values were .50, 55o, .60, 41. , 1. 40, 1.45. For

good measure, the 50% point was placed in the middle of this series, at

.975. The performance of the maximum likelihood and countback con-

fidence limits (i.e., how often they contained .975) was then ascertained,

as the steepness of the logistic curve varied. (Fig. 3a, b, c, and d

shows curves with central slopes proportional to 2.5, 5, 10, and 20,

respectively. They comprise most of the range over which the methods

were tested.)

In discussing the results, it is important to emphasize that the

true confidence coefficients for both methods varied with the slope of

the underlying logistic curve. These coefficients tended to be lowest

for a middle range of slopes, improving as the slopes got either very

small or very large.

The so-called 95% confidence limits given by maximum likelihood had

a confidence coefficient below .91 when the logistic curve had a slope

of 10. The coefficient was still below .95 for slopes of 5 and 15, but

rose to .967 when the slope increased to 20. The 99% limits produced a

coefficient less than .98 for a slope of 5, but were up well above .99

for slopes of 15 or more.

With c chosen as 1, the countback method guarantees only a con-

fidence coefficient of .5. In this situation, however, it did consider-

ably better, and was almost identical to 95% maximum likelihood. When

the slope was 8, its true coefficient reached a minimum of .879. Taking
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c = 2 (a guaranteed confidence coefficient of .75), the minimum co-

efficient was .973, attained at a slope of 5. The coefficient

increased to above .99 for slopes greater than 11. Finally, the

coefficient for c = 3 never dropped below .994 (see the first part

of Table 5).

It is worth summarizing and discussing these results. First, con-

sider maximum likelihood. At worst, this approach underestimates the

probability that its limits do not contain the 50% point by at least a

factor of two. To see whether this difficulty was related to some

special feature of maximum likelihood estimation, another method, namely

minimum X
2

, was used. This method is not as widely used as maximum

likelihood, but has been earnestly advocated (see Berkson, 1949).

As with maximum likelihood, one must assume a specific probability

model to use minimum X
2

, and, for consistency, the logistic was again

the model chosen. Minimum X
2

is also guaranteed to produce asymptoti-

cally efficient and normally distributed estimates as the sample size

gets large, but here the relationship to maximum likelihood ends. It is

an open question how well the two methods will agree for any specific

small sample situation. In fact, the minimum X
2

results were virtually

identical to those of maximum likelihood for the 95% limits (giving a

minimum true confidence coefficient of less than .91), and only slightly

better for the 99% limits (giving a minimum of less than .985).

Now let us consider the countback method. In contrast to maximum

likelihood, it did much better than its claims. This fact led to the

development of another theoretical result about countback confidence



limits. If response probabilities are symmetric
1
around the 50% point

(as those of the logistic model are), the minimum confidence coefficient

for the countback is 1 -
2-2c

(instead of 1 - 2-c). Thus, for c = 1,

symmetry guarantees a confidence of at least .75 and, for c = 2 , at

least .9375 (see Table 4 for more values).

This artificial situation has given us a better picture of the

countback method than we had from the theory and experiment alone. In

fact, there is more information to be gained. For each value of the

slope, a (between 0 and 20), it was possible to find the median length

of the countback confidence intervals. We can thus see how this length

changes relative to a . When c = 3 (the only case studied), the

median interval is infinitely long when a is less than 3. For a.

between 3 and 8, the median length is approximately 3/a . Above 8,

the median length is the minimum possible for c = 3 and a spacing

between levels of .05, namely .35.

Evidently, the countback intervals are most efficient for a some-

where between 3 and 8. For smaller values of a , the responses are not

being obtained over a wide enough range of the variable of interest. For

larger values, it seems that the range is more than adequate and a finer

coverage (i.e., closer spacing between levels) is desirable instead.

Now let us turn to a consideration of the second artificial situa-

tion. The confidence limits of the countback method are at their worst

when there is an asymmetry in the response probabilities. Such an

1Mere, symmetric means that the probability of a positive response k
levels below the 50% point equals the probability of a negative response
k levels above the 50% point, for k = 1,2,3,... .
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Table 4

Lower Bound on Confidence Coefficient for

Countback Limits When the Response

Probabilities Are Symmetric

Around the 50% Point

Levels
Counted Back Lower Bound

1 - 2
-2c

1 .75oo

2 .9375

3 .9844

L. .9961

5 .9990
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asymmetry could involve a slow decrease in positive response probability

below the 50% point and a rapid increase above this point. An extreme

case of asymmetry occurs when the probability is .5 for all levels up

to a point, above which the probability is 1. In this situation, the

confidence coefficient for the countback method is just above 1 - 2c

In the second artificial situation the same levels were used as

before, but the 50% point was chosen to be between the sixth and seventh

levels, at .79 on the scale used in the experiment. All levels above

the sixth were assigned a positive response probability of 1. The

remaining response probabilities were specified with the lower half of

a cumulative logistic curve. The slope of this curve varied from 0 to

20 on the same scale used before. The resulting situations, for slopes

of 2.5, 5, 10, and 20, are shown in Figure 4a, b, c, and d. When the

slope is 0, we have the extreme case mentioned above, which results in

a step function.

In general, the confidence coefficients for all methods studied

.

i(countback, maximum likelihood, and minimum X2) increased as the slope

of the lower half of the probability curve increased. Unlike the

previous situation, the confidence coefficients in this case could be

evaluated exactly for all methods. Consequently, the results can be

easily summarized in graphical form. (See Fig. 5 on p. 50. Table 5

also gives the results, along with those for the first situation.)

There are several things to say in connection with these results.

The countback with c = 1 differs from 95% maximum likelihood only for

small values of the slope. Maximum likelihood's 99% limits are effec-

tively identical to the 95% limits attained by minimum X
2

, hence the

, ;. .R70 -7; ,:gyr .47
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Table 5

Confidence Coefficients for the Countback Method (CB), Maximum

Likelihood (ML), and Minimum X
2

(MC) Confidence Limits in

the Two Artificial Situations (Logistic and Asymmetric)

Method

5

CB, c = 1 .90

95% NE, <.93

95% MC <.95

CB, c = 2 .973

99% ML <.979

99% MC <.986

CB, c = 3 .995

Confidence Coefficients

Logistic
Slope

10 15 5

Asymmetric
Lower Slope

10 15

.89 .93 .73 .90 .967

<.91 <.914 .73 .90 .965

<.91 <.94 .82 .92 .969

.988 .997 .94 .991 .999

<.988 <.997 .82 .92 .969

<.990 <.998 .958 .993 .999

>0999 >.999 .990 >.999 >0999



-29-

two labels for the same curve in Figure 5. The 99% limits of minimum

X
2

are better than those of the countback with c = 2 , but worse

than with c = 3 .

Based on the comparisons of the previous situations, the most

surprising finding is the relative failure of the 99% maximum likeli-

hood confidence limits. This reinforces the observation made earlier

that maximum likelihood and minimum X
2

need not give the same results

for small samples. In this case, the minimum X
2

, with its generally

longer confidence intervals, seems to have the advantage. For example,

with a slope of 9, the confidence coefficient for the 99% minimum X
2

limits is indeed .99, while the 99% maximum likelihood limits have a

coefficient of only .90.

Finally, of all the limits studied, only those of the countback

with c = 3 come close to being
ft

safe
It

for an experimenter interested

in confidence levels of at least .95. Again, it should be emphasized

that the present example is an extreme case, and it may be considered

likely that it represents the methods at something near their worst.

Now we have seen how the countback method and two asymptotically

%

efficient approaches (maximum likelihood and minimum X2) work in a few

special cases. As was emphasized earlier, the latter two were designed

to deal with data involving many observations per level and following a

narrowly specified model of response probabilities. Consequently, the

lack of correspondence between the confidence coefficients derived from

these assumptions and those obtained in our cases should not be surpris-

ing. This lack of correspondence should, however, strengthen our
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reservations about naively applying maximum likelihood or minimum X
2

to situations similar to those we have examined.

The countback method gains additional support in these examples from

the fact that its true confidence levels exceed the theoretical minimum

values by a substantial margin. Thus it is comforting to know that one

does not need to count back 5 steps in order to be reasonably sure of

having 95% limits, or 7 steps for 99% limits. Instead, it appears that

taking c = 2 for roughly symmetric situations, or c = 3 in more

extreme cases will easily provide 95% limits, and increasing c by 1

will increase the confidence to above 99%.

Finally, from the point of view ,of design, using as few as 20 levels

(hence 20 observations) seems to be satisfactory. Moreover, if there is

some knowledge of the location of the 50% point, there is no need for

extremely wide coverage with these levels.

Thus a method starting with minimal assumptions about the data is

able to operate effectively for an experimental design where traditional

approaches are largely inappropriate. It is hoped that this development

will encourage wider use of the sensitivity experiment with one observa-

tion per level and its application to new research problems.

We have studied the countback method only as it applies to data

with one observation per level. There is, however, no reason why the

same approach could not be used when more than one observation per level

has been made. The high and low levels could still be the highest with

a negative response and the lowest with a positive response, respectively.

For an integer c , the lower limit L could still be c levels below

the low level and the upper limit U , c levels above the high level.
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The restrictions for perfect data and for artificial absolute limits

could still be made.

The only difference, in fact, would be in the lower bound for the

confidence coefficient associated with L and U . Suppose, for

simplicity, that the same number of observations, n has been made at

each level. Then the lower bound becomes 1 - 211c . Table 6 gives

actual values of this bound for different choices of n and c .

`7.7-1
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Table 6

Lower Bound on Confidence Coefficient

for Countback Limits with More Than

One Observation Per Level

Levels
Counted Back Lower Bound

1 - 2
-nc

n = 2 n = 3 n = 4

1 .7500 .8750 9375

2 .9375 .9844 .9961

3 9844 .998o .9998

4 9961 9998 .99998

5 .9990 99997 999999
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Statistical Appendix

This appendix is divided into two sections. The first gives the

essentials of the theory associated with the countback method. The

second section deals with the maximum likelihood and minimum X
2

approaches as they apply to the logistic model and one observation

per level.

The Countback Method

The main purpose of this section is to prove and expand upon asser-

tions made earlier about the countback method of constructing confidence

limits for a 50% point in sensitivity experiments. It will be remembered

that these limits were defined in terms of the lowest level at which a

positive response was observed and the highest level at which a negative

response was observed. Once a positive integer c is chosen, the lower

limit, L , is defined as the level c steps below the low level. Simi-

larly, the upper limit, U , is located c steps above the high level.

If there are not enough levels in the experiment to allow L or U

to be defined in this way, the artificial absolute limits, -00 or + 00

may be used for L or U , respectively. These are assumed to be

absolute lower and upper limits. They are used to keep the confidence

associated with L and U within reasonable bounds, even when the data

itself is unrewarding in at least one direction for the determination of

a 50% point.

The other exception to the general countback rule occurs with perfect

data, i.e., a string of negative responses followed by a string of positive

-33-



responses. Here one counts back c + 1 steps rather than c . (0r, to

put it another way, one counts down c steps from the high level for L

and up c steps from the low level for U .) Briefly, the reason for

this modification is that perfect data need not be as good as they look.

Consequently, it is best to treat them with a little extra care. (This

subject comes up again in the second section, where the problem is

considerably more serious than at present.)

There are two assumptions associated with the countback method. The

first of these is that a level of the variable under study exists with

the following property: the probability of a positive response at all

higher levels is greater than .5 and less than .5 at all lower levels.

(This level will occasionally be loosely referred to as the 50% point.)

The second assumption is that the observations are statistically inde-

pendent.

With theSe two prerequisites, it is possible to establish absolute

lower bounds on the confidence associated with L and U , with these

bounds depending only on c .

In the discussion which follows, the experimental levels of the

variable of interest will be designated 1,2,...,N , from the lowest

level to the highest. The probability of a positive response at level

i will be abbreviated as Pi , with Qi (= 1 - Pi) referring to the

probability of a negative response at level i . It will also be assumed

that the 50% point falls well within the series, simply because the other

cases are trivial extensions of this main one and add nothing new.

Finally, the modification for perfect data will be ignored until

later in the discussion.
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If the 50% point lies between experimental levels i 1 and i 0

theritheassumptionisthatP.<.5 for j < i and P. > .5 for

j >i . Now, in order for the limits L and U to be valid, L must

be one of levels -0301020 or i - 1 and U must be one of levels

* , lye.. 0N or +00 . Put another way, L and U will not in-

clude the 50% point if L is any level greater than i - 1 or if U

is any level less than i . This latter point of view turns out to

provide easier mathematics, so it is the one which has been adopted.

L will be level i if the lowest positive response occurs at

level i + c . More generally, L will be above level i - 1 if and

only if the lowest level with a positive response is i + c or higher.

This last is equivalent to saying that only negative responses occur at

levels below i + c . The probability of such an event (by the inde-

i+c-1
pendence assumption) is II Q. . Similarly, U will be below

j=1

level i if and only if positive responses occur at all levels above

N
i - c - 1 . The probability of this event is II P. .

j=i-c

The two events just described are mutually exclusive (i.e., it is

impossible to have L above the 50% point and U below it simultaneously).

As a consequence, the probability that L and U will fail to include

the 50% point is just the sum of the individual probabilities:

i+c-1
II Q. + II P. . Subtracting this quantity from 1 gives the
j=1 j=i-c

confidence coefficient associated with L and U .

The next step is to find the minimum value this confidence coefficient

canattain,giveritheconstraintsonthep...This is equivalent to

maximizing the above sum. Clearly, the first term of the sum is greatest
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When each of the Q. is maximized (j = 1, ... i + c - 1) . This

means setting Q. = 1 for j < i and Q. = .5 for j >i according

to the constraints. The resulting maximum is .5c since there are c

levels above i - 1 in the product. Incidentally, the second term

is 0 under this choice of probabilities since setting Qj = 1 is

equivalent to setting P. = 0 .

In the same way, the second term can be maximized at .5c by taking

maximal values for the P. , and this choice makes the first term 0 .

Thus the question remains as to whether the sum can attain a value

greater than .5
c
for some compromise choice of the P . In answering

this, it is important to note that the total probability of L and U

failing is a linear function of each of the P. . This means that the

nmdmumvalueofthisprobabilitywillbeattainedwheneachP.is

set at ones of its extremes.

Now let us proceed by a process of elimination. Clearly, any choice

of P. which makes either term 0 is unacceptable in trying to make the

sumexceed.5c.Consequently,a1113.with j = i - c, i + c - 1

must be set at .5. This is because all of these are represented in both

terms, once as P. and once as 1 - P (= Q.) . For lower values of

j ,onlyQappears(soforthese,P.my be set at 0 ). Similarly,

for higher levels only P. appears, and P. may be taken as 1. Since

there are 2c levels for which P. has been set at .5, the total

probability becomes: .5
2c

+ .5
2c

= .5
2c-1

. This value is equal to

.5c when c = 1 and less than .5c when c > 1 .

The above proof is the justification for the claim that the count-

back confidence coefficient is at least 1 - .5c when one counts back

c steps.

f" . - - rmr. 777 - "77-- -77"r' -9 '17.'4. 1
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Now we are ready to see what happens when the modification for

perfect data is made. Before, a statement was made that L will be

above i - 1 if and only if only negative responses occur below i + c .

This is no longer true. If only negative responses occur below i + c

and all higher responses are positive, L will be located at i - 1 .

Consequently, the probability of this particular set of perfect data

must be subtracted from our original value to describe the new situation.

The result is

i+c-1 i+c-1

H g ( n Q)( n p.) .

j=i j=1 j=i+c

In the same way, the probability of U being below the 50% point is

reduced to

N i-c-1
H P. - ( n (1.)( n P.) .

j=i-c j=1 J
j J
j =i -c

Without going through any proof, one can see that this change can only

increase the minimum confidence coefficient. The amount by which it is

increased (namely .5N) is hardly worth mentioning, and 1 - .5c remains

the practical lower bound.

It is worth noting that the perfect data modification was made to

help the method in typical rather than extreme cases. The minimum confi-

dence coefficient, after all, is attained when there is perfect discrim-

ination on one side of the 50% point, and perfect confusion on the other

side. This may be thought of as the maximally asymmetric case. Conse-

quently, we may be led to ask what happens when the response probabilities

are symmetric about the 50% point. In one context, this may be taken to



mean that Q. = Pi
,

Qi_2 Pi4.1
,
and so on. This, in turn, implies

that

i+c-1 i+c-1

IT Q. = II P. 1

j=i-c j=i-c

given that c+ 1 < i < N - c + 1 . For ease of notation, let us set

i-c-1 i+c-1
IT Q. =A, II Q. =B, and II P. =C.

j=1 J j=i-c j=i+c

In these terms, the probability that L and U will fail to include

the 50% point becomes AB + BC without the perfect data modification

and AB - ABC + BC - ABC with it. These can be rewritten as B(A + C)

and B(A + C - 2AC) , respectively. Because of the symmetry, we always

have B < .5
2c

. In addition, A + C can be as great as 2, while

A + C - 2AC must always be less than 1. Consequently, when the 50%

point is well within the experimental series (c + 1 < i < N - c + 1) 1

symmetry increases the lower bound for the confidence coefficient from 1 - .

to 1 - .5
2c-1

in the unmodified case and to 1 - .5
2c

after the

modification. These limits are listed in Table 7.

Finally, when the 50% point is near either end of the series,

symmetry becomes a less important constraint and the bound drops

accordingly. In the extreme, when the 50% point is outside the series,

symmetry has no value and the bound returns to 1 - .5
c

Maximum Likelihood and Minimum X
2

Logistic Analysis

These approaches differ from the countback method in that they

require a specific model of response probabilities. In the present work,

the cumulative logistic distribution was taken as the model. If x is
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Table 7

Effect of Perfect-Data Modification on

Lower Bound for Confidence Coefficient

in the Symmetric Case

Levels Counted Back Lower Bound

c

Without With
Modification Modification

1 - .5
2c-1

1 - .5
2c

1 .5000 .750o

2 .875o .9375

3 .9688 .9844

4 .9922 .9961

5 .998o .9990
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the value of the variable at any level, it provides a value for the

probability of a positive response at that level by

P = (1 + exn(-1.7a(x - b)))-1 . In this context, maximum likeli-

hood and minimum X
2

are two ways of fitting this function to data

by providing suitable choices for a and b .

Let us first concentrate on maximum likelihood. Suppose we define

r = 1 for a positive response at any level and r = 0 for a negative

response. Then the probability of a given data set is HP
r(-

P)
1-r

= L

where the product is taken over all experimental levels. Maximum

likelihood estimation finds a and b which maximize L . Usually

(and our case is no exception) this means solving the equations

6 log L/6a = 0 and 6 log Oh = 0 . (Taking logarithms does not

change the location of the maximum and makes things mathematically

simpler as well as numerically better behaved.)

After some rearrangement, these equations become

-1.7 E(r - P)(x b) = 0 and 1.7aE(r P) = 0 , which are equivalent

to Er = EP and Erx = EPx . These equations were solved numerically

with the help of a modified Newton-Raphson method. The choice of

starting values for a and b was important, but, given a good choice,

a wide range of data could be fitted to the limits of computational

accuracy, usually within six iterations.

For the minimum X
2

method, a function other than the likelihood

is important. As implied by the name, this approach finds a and b

which minimize the usual measure of goodness of fit, namely

X
2
= E

[..(r p)2 ((1 - r) (1 P))2j_ (r p)2
(1 - P) P(1 - P)



In a manner analogous to maximum likelihood, this means solving

/,
the equations 6 log X

2/oa
= 0 and 6 log X

2th = 0 for a and b .

Written out and simplified, these equations are

and

(1.7/X2)[ E (x - b)eY - E (x - b)e-Y] = 0
r=0 r=1

(-1.7a/X2)[ E eY - Ee-Y] = 0 ,

r=0 r=1

where y = 1.7a(x - b) and X
2

simplifies to E ey + E e
-y

. Again,
r=0 r=1

a modified Newton-Raphson procedure was applied, with much the same

success as before.

Having obtained estimates of the 50% point (b in our logistic

model), the next concern should be the quality of these estimates.

Both minimum X
2

and maximum likelihood estimates can be shown to be

asymptotically normally distributed around the true values with a

/

variance-covariance matrix given by -D
-1

(Kendall & Stuart, 1967).

Here D is the expected value of the matrix of second-order derivatives

of the log likelihood, evaluated at the true values of a and b .

/,
Thus, for instance, the element d12 = Eko

2log 0a6b) .

To pass from this information to nominal confidence limits requires

quite an act of faith. Nonetheless, it is possible to evaluate the

second-order derivatives at the estimated values of a and b and,

from them, follow the theory to a matrix, S , analogous to the

asymptotic variance-covariance matrix. Then s
22

is analogous to the

variance of our estimate for b and, for instance, "95%" confidence

limits can be generated by subtracting and adding 1.96 VT; to the
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estimate. It is, of course, a completely open question what the actual confi-

dence coefficient will be for these limits in any given situatiat. It

was partly to study this question that the work described in the

Simulation Appendix was carried out.

Examples of computer output for selected data are found in Table 8.

Here, as in the simulations and the experiment, there were 20 levels of

the variable, from .50 to 1.45 in steps of .05. The output titled

MAXILIK gives the results of applying maximum likelihood to the data,

while MINICHI gives the results of applying minimum X
2

. Data appear

following question marks, 0 for a negative response and 1 for a positive

response. Below each data set are listed EST., the estimate, S.E., the

standard error of estimate (1/T; , based on the asymptotic results), and

DER., the final derivative of the relevant function (log likelihood or

log X
2
), for the slope (A) and 50% point (B). Finally, "95%" and "999"

confidence intervals (C.I.) for the 50% point are given in parentheses.

Comparing the results of the two programs for identical data

suggests some generalizations. First and foremost, estimates for b ,

the 50% point, agree very closely. Second, minimum X
2

provides a

smaller estimate of the slope. (See Little, 1968, for a theoretical

treatment of this point.) Third, maximum likelihood gives shorter con-

fidence intervals. (Considering the simulation results, this should be

seen as a failing rather than a virtue.)

One more problem needs to be discussed. What happens to these

methods with perfect data (i.e., data consisting of a string of negative

responses, followed by a string of positive responses)? Both maximum

likelihood and minimum X
2

find the best (indeed,perfect) fit to
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Table 8

Examrles of Output from Computer Programs Used to Find Maximum Likelihood

(MAXILIK) and Minimum X2 (MINICHI) Confidence Limitl

MAXILIK

7 0,0,0,0,0,3,0,0,0,1,0,1,1,1,1,1,1,1,1,1
EST. S.E. DER.

A 15.413 9.72732 -1.77666 E-7

B 0.975 4.36839 E-2 -4.5755 E-8
C.I. FOR B: ( 0.88938 , 1.06062 ) ( 0.86247 , 1.08753 )

0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1
EST. S.E. DER.

A 15.398 9.75583 -1.60502 E-6
B 0.774986 4.37133 E-2 1.29816 E-6

C.I. FOR B: ( 0.689308 , 0.860664 ) 0.662381 , 0..887591 )

7 0,0,0,0,0,0,0,1,0,0,1,1,1,1,1,1,1,1,1,1
EST. S.E. DER.

A 10.7731 5.70744 -1.53066 E-6

B 0.924988 5.22584 E-2 -1.7147 E-6

C.I. FOR B: ( 0.822562 , 1.02741 ) ( 0.790371 , 1.05961 )

? 0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,1,1,1
EST. S.E. DER.

A 8.72058 4.23208 -6.28525 E-9
B 1.07517 5.81569 E-2 -4.24733 E-6
C.I. FOR B: ( 0.961179 , 1.18915 ) ( 0.925354 , 1.22498 )

7 0,0,0,0,0,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1
EST. S.E. DER.

A 6.55659 2.96189 -6.9328 E-7

B 0.823254 6.77866 E-2 1.60414 E-6

C.I. FOR B: ( 0.690392 0.956116 ) ( 0.648636 0.997872 )



Table 8 (Contd)

MINICHI

? 0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1,1
EST. S.E. DER.

A 11.3192 6.13501 -6.04948 E-8

B 0.975 5.09778 E-2 -1.16612 E-6

C.I. FOR B: ( 0.875083 , 1.07492 ) ( 0.843681 , 1.10632 )

? 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

EST. S.E. DER.

A 11.2691 6.22063 -3.25245 E-10

B 0.774958 5.11698 E-2 -1.27135 E-6

C.I. FOR B: ( 0.674665 , 0.875251 ) ( 0.643145 , 0.906771 )

? 0 , 0 , 0 , 0 , 0 , 0, 0 , 1 , 0, 0 , 1 p 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1

EST. S.E. DER.

A 7.39583 3.3522 -2.95945 E-9

B 0.913384 6.32176 E-2 -7.53317 E-7

C.I. FOR B: ( 0.789476 , 1.03729 ) ( 0.750536 , 1.07623 )

? 0 p 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 1 9 0 9 1 9 0 9 1 9 1 9 1 9 1 9 1 9 1

EST. S.E. DER.

A 5.84153 2.51411 -2.72263 E-10

B 1.07545 7.17866 E-2 -4.23514 E-7

C.I. FOR B: ( 0.934751 , 1.21615 ) ( 0.89053 , 1.26037 )

? 0,0,0,0,0,1,1,0,1,0,10,1,1,1,1,1,1,1,1
EST. S.E. DER.

A 4.32084 1.86446 -1.90648 E-9

B 0.831057 8.67783 E-2 -1.40864 E-7

C.I. FOR B: ( 0.660972 , 1.00114 ) ( 0.607517 , 1.0546 )
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perfect data when 1/a = 0 . If 1/a really were 0, only perfect data

centered at the 50% point would have any chance of occurring. Thus the

variance of the estimate of the 50% point would certainly be O. This,

however, leads us to the unacceptable conclusion that the length of the

confidence intervals for perfect data should be 0: that we should have

complete confidence in our estimate. Clearly, another approach must be

taken.

On intuitive grounds, one might want the confidence interval for

perfect data to be at least as short as that for any other data which

give the same estimate for b . In fact, the nonperfect data with the

shortest associated confidence interval have a single reversal in the

response pattern. Explicitly, single reversal data have a string of,

negative responses, followed by a positive response, a negative, and a

string of positives, in that order.

Consequently, a conservative procedure in line with the intuition

expressed above is to treat perfect data as though they were single

reversal data, centered at the same place. For lack of any better idea,

this is what has been done throughout the present study, both in the

simulations and for the experimental data. It cannot be emphasized too

strongly, however, that this is an unsolved problem, and an important

one because of the relatively high likelihood of obtaining perfect data.

(See Table 9 for the probability of perfect data with the probit model

used in the simulation.)
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Table 9

The Probability of Obtaining Perfect Data

with the Logistic Model Used in the First

Simulation (20 Equally Spaced Levels,

Centered on the 50% Point)

Slope of Logistic
a

Probability of
Perfect Data

2.5 .0071

5.0 .0872

7.5 .2455

10.0 .4069

12.5 .5405

15.0 .6443

17.5 .7236

20.0 .7842



Simulation Appendix

Before discussing the details of the simulations, it would be worth-

while to describe the models used. For the standard situation, the

logistic model provided values for P , the probability of a positive

response at a given level of the variable: P = (1 + exp(-1.7a(x b)))-1

In this equation, x is the value of the variable, b is the 50% point,

and a is related to the slope of the logistic curve when x = b .

(The constant factor 1.7 has been added to make a roughly comparable

to liu in the normal distribution function.)

To allow for comparisons with the accompanying experiment, twenty

levels were used, with x varying from .50 to 1.45 in steps of .05. In

the standard situation, b was placed in the middle of this series, at

.975, and a was varied between 2.5 and 20.

The extreme situation differed from this in only two respects. First,

b was changed to .79. Second, all values of P corresponding to x > .79

were taken to be 1, instead of the value given by the logistic. In other

words, this situation operates on a logistic model below the 50% point,

and on a deterministic (or errorless) one above it.

Three kinds of simulation were applied to the above situations. In

the first kind, sets of 20 independent values (each uniformly distributed

between 0 and 1) were obtained from a random number generator. If the

i -th random number in a set was less than P for level i , it was

taken to represent a positive response (and otherwise a negative one).

In this way, sets of artificial data could be produced based ou

either situation and any choice of a . Moreover, these data could be

-4.7-
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analyzed by any of the three techniques to see whether or not b lay

within the resulting confidence intervals.

In fact, this approach was used only for the standard situation

and then only with the maximum likelihood method. Five values of a

were chosen (2.5, 5, 10, 15, and 20) and 1,000 sets of numbers were

generated for each value. The performance of both "95%" and "99%"

confidence limits was observed for each of the samples. Finally, 99%

confidence limits based on the binomial distribution (Wilks, 1962) were

calculated for each estimate of the confidence coefficients. (The

results are given in Table 10.)

The second kind of simulation involved a partial or complete

enumeration of the possible response sets. In the extreme situation

there are only 64 possible sets, since P = 1 for all but the six lowest

levels. Thus, these 64 could each be analyzed, and those sets giving

rise to intervals not including the 50% point could be singled out. For

any choice of a , the probability of obtaining each of these sets could

be calculated directly. Thus, an exact value could be obtained for the

confidence coefficient of limits generated by any of the three techniques.

In fact, this approach was used only for maximum likelihood and minimum

X
2

. The results are shown in Figure 5. (Note that the levels for "99 %"

maximum likelihood limits are identical to those for "95%" minimum X
2

limits. This is a consequence of the fact that these two sets of limits

failed to include the 50% point for precisely the same sets of data.)

Partial enumeration was used for the standard situation. The lowest

five responses were fixed as negative and the highest five fixed as

positive. All combinations of the middle 10 responses were then taken,
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Table 10

Estimates and 99% Confidence Limits for Maximum

Likelihood (ML) Confidence Coefficients, Based

on Samples of 1000 Data Sets, in the

Standard Situation (Logistic Model)

Slope

a

Lower
Limit

2.5 .9249

5.0 .8798

10.0 .8742

15.0 .9086

20.0 .9520

1195%"
ML

Esti-
mate

9450

.9050

.9000

.9310

.9680

Confidence Coefficient

Upper
Limit

Lower
Limit

"99%" ML

Esti-
mate

Upper
Limit

.9619 .9720 .984o .9924

.9275 .9618 .9760 .9867

.9231 .9774 .988o .995o

.9501 .9844 .993o .99796

.9806 .9947 .9990 .999995
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and the resulting 1024 data sets analyzed, both by maximum likelihood

and minimum X
2

. Again, the total probability of those sets whose

intervals did not include the 50% point was calculated for different

values of a .

Not all possible data were considered in this evaluation. The two

extremes for the remainder are that none of the associated intervals

include the 50% point and that all of them do. Based on these extremes,

absolute bounds for the confidence coefficients were found.
2

These

bounds are quite good when a is large and almost useless when a is

small (see Table 11).

We can combine the results of Tables 10 and 11 to provide a com-

posite picture of the maximum likelihood confidence coefficients for

the standard situation. To do this, we simply take the better bounds

on the confidence coefficients at each value of a . The results are

given a natural representation (namely bands, within which the co-

efficients almost certainly lie) in Figure 6, where they may be compared

with the countback coefficients.

The third kind of simulation is best described as analytic, and

was used exclusively with the countback method. As shown in the

Statistical Appendix, exact formulas are available for the countback

confidence coefficients in terms of P . These were used with several

values of a ,and for c (the number of levels counted back) equal to 1, 2,

2
The derivation of the absolute bounds is quite simple. Suppose

pi is the probability associated with the data examined whose intervals
contain the 50% point. Also suppose p2 is the probability associated
with the data not examined. Then the bounds on the true confidence
coefficient are p1 and p1 + p2
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Table 11

Estimates and Absolute Bounds for Maximum Likelihood (ML)

,

and Minimum X
2

(MC) Confidence Coefficients, Based on

Partial Enumeration of the Possible Data Sets,

in the Standard Situation (Logistic Model)

Slope Method

a

Lower
Bound

"95%"

Esti-
mate

Confidence Coefficient

Upper Lower
Bound Bound

"99%"

Esti-
mate

Upper
Bound

2.5 ML .1336 .9052 .9860 .1423 .9638 .9947

MC .1391 .9421 .9914 .1445 .9785 .9968

5.0 ML .5546 .8927 .9333 .6000 .9658 .9787

MC .5665 .9118 .9452 .6068 .9767 .9855

7.5 ML .7918 .8935 .9056 .8656 .9768 .9794

mc .7975 .9000 .9114 .8708 .9827 .9846

10.0 ML .8760 .9045 .9075 .9562 .9873 .9877

mc .8776 .9062 .9091 .9586 .9898 .9901

12.5 ML .9132 .9213 .9220 .9852 .9939 .99396

mc .9136 .9217 .9224 .9861 .9948 .99485

15.0 ML .9367 .9390 .9392 .9948 .99728 .99728

mc .9368 .9391 .9393 .9951 .99757 .99758

17.5 ML .9540 .9547 .95474 .9981 .99884 .99884

Mc .9540 .9547 .95476 .9982 .99892 .99892

20.0 ML .9671 .9673 .96731 .9993 .99951 .99951

MC .9671 .9673 .96731 .9993 .99954 .99954
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mul

owl

. 500 .

. 000 -d
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Slope for Response Probability Curve

Fig. 6. Confidence coefficients for the countback method (CB) and bounds on
the confidence coefficients for maximum likelihood (ML), based on Tables 10 and 11,
for the logistic situation as a function of the slope.



and 3 in both the extreme and the standard situations. The results

are summarized in Figures 5 and 6.

Finally, median lengths of countback intervals were found through

analytic simulation. The possible data for the standard situation were

divided into equivalence sets, according to the length of the interval

they would lead to. Due to the simplicity of the countback method, the

probability for each set is expressible in an exact formula.

To find the median interval length, one orders the sets according

to length, begins with the smallest (for convenience) and accumulates

the associated probabilities until the total reaches .5. The common

length for the set of data last considered is the median of the lengths

for all the data. The results of applying this procedure with c = 3

are shown in Figure 7. Here a was varied between 2 and 20 but this

has been reinterpreted as varying the spacing between levels with a

fixed. Both spacing and lengths are given in units of 1/a.
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9444/14///1/1/

1.2

.13 .11. .5

Spacing Between Levels (Units of 1/a )

I I III
.6 .7 .8 .9 1.0

Fig. 7. Median length of countback confidence intervals with c = 3 , for the
logistic situation.



Historical Appendix

Rather than provide a comprehensive history of approaches to the

sensitivity problem, this section will attempt to give a general frame-

work, so that the present development may be seen in proper perspective.

In addition, more detailed discussions of various approaches will be

referred to for the benefit of the interested reader.

By far the most widely adopted method of dealing with sensitivity

data is maximum likelihood estimation. (A small sample of recent

applications is provided in a list immediately following the Bibliography.)

Most appropriate in situations where a specific probability model arises

from theoretical considerations,.it appeared in this context in a paper

by Fisher (1922). In trying to estimate the density of organisms in a

suspension, the dilution series experiment described at the beginning of

the main section is usually employed. Fisher assumed that the number of

organisms in any sample would have a Poisson distribution. (This would

follow, as an adequately close approximation, from the assumption that

the organisms are distributed randomly in the suspension.) On this basis,

the probability that a given sample will have no organisms (resulting in

a negative response) can be given explicitly in terms of the density of

organisms in the suspension and the dilution of the sample.

As a consequence, the probability of a given set of data can be

explicitly stated. The value of the density which maximizes this proba-

bility is the maximum likelihood estimate of the true density. Fisher

worked out a way of obtaining this estimate and later provided tables

(Fisher & Yates, 1963) to simplify the process. A good expository treatment

-56-
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appears in a paper by Cochran (1950), and applications as well as statis-

tical modifications continue to appear in large numbers.

Unfortunately, most sensitivity problems do not come complete with

a convenient and appropriate probability model. As a consequence,

advocates of maximum likelihood estimation (e.g., Finney, 1952) have

suggested the use of a standardized model, usually the cumulative normal

distribution, with the provision that the variable under study be trans-

formed, if necessary, to make the model more reasonable.

To actually find the maximum likelihood estimates, the standard

suggestion has been to convert the problem into a linear one and use

weighted least squares. The conversion is made by transforming the

observed proportion of positive responses at each level into its equiva-

lent normal deviate (using the inverse of the cumulative normal function).

As a convenience, the normal function usually used has a mean of 5 and a

standard deviation of 1. In this case, the transformed proportions have

been called probits (Bliss, 1934), and the name probit analysis has been

applied to the technique as a whole.

First correctly treated by Gaddum (1933) and Bliss (1934), probit

analysis has been discussed in detail by Finney (1952, 1964), who includes

a history of the method in his 1952 monograph. Another excellent review

can be found in a collection of papers in Vol. 52 of the Annals of the

New York Academy of Sciences. Of particular interest in this collection

is a paper by Miller (1950) in which he discusses and compares varieties

of probit analysis, related shortcut techniques, transformations other

than the normal, and nonparametric methods. (These last will be mentioned

later.)

a
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The applications of probit analysis are extremely widespread, mostly

within biology and pharmacol)gy but, to an increasing extent, in

psychology as well. Statistical treatment and modification also con-

tinue at a healthy pace. Much of this work can be found in Biometrics,

and some in psychometrika.

It may have been observed that probit analysis (as I described it)

has an important failing which is highly relevant to the main subject

of this paper. This is that the probit corresponding to the proportion

0 is -co and, corresponding to 1, +co . This is a problem, no matter

how many responses are obtained at a level, but becomes acute when there

is only one response per level, so that all proportions are either 0 or

1. Both Bliss (1938) and Finney (1947) have discussed this problem and

offered reasonable solutions in terms of what Finney calls minimum and

maximum working probits. Typically, this approach would involve several

iterations of the weighted least squares solution. The alternative which

I adopted is to maximize the likelihood function directly (by numerical

techniques) thus working only with the proportions. Needless to say,

this alternative is facilitated by the existence of high-speed computers,

a resource not available at the time probit analysis was developed.

Another method using maximum likelihood and the normal model is the

"up-and-down" approach of Dixon and Mood (1948). Here the main novelty

is that the number of responses per level is determined as the experiment

progresses. This has the important advantage of concentrating observations

near the 50% point, thus improving the precision of the estimate. It has

the disadvantage that responses must be obtained on an individual basis,

with the next level only chosen after the previous response is known.
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This has limited its applications, particularly in some of the biological

work discussed earlier.

Hopefully, the foregoing remarks have provided some feeling for the

extensive history maximum likelihood solutions to the sensitivity

problem have enjoyed. To the nonstatistical reader, a word of explana-

tion is in order. An extensive theory has been built up around maximum

likelihood estimation. Among other things, this theory says that,

asymptotically (i.e., as the sample of data becomes infinitely large),

maximum likelihood estimates have minimum variance among all (asymptoti-

cally) unbiased estimates.

It is a fact, however, that maximum likelihood is not unique in

this regard. For instance, estimates obtained with minimum X
2

techniques also have minimum variance as the sample becomes infinite.

As the name implies, minimum X2 involves finding estimates which

minimize the usual goodness-of-fit measure for the data with respect to

some model (such as the normal cumulative distribution).

Berkson is the main advocate of this approach for sensitivity data.

He has discussed several variations of the method with both normLi and

logistic models, and compared it with maximum likelihood, in numerous

papers (1946, 1949, 1953, 1955a, 1955b, 1956). Applications of minimum

2 ,

X (as well as maximum likelihood) to psychological scaling problems

are given a thorough treatment in a recent book by Bock and Jones (1968).

Theoretical developments, as with maximum likelihood, are found mainly

in Biometrics.

Finally, there are several methods which are related to the count-

back, in that no strict assumptions are made concerning the response



probabilities (although, unlike the countback, symmetry is always required).

The best discussion of these approaches occurs in Finney (1964), where

extensivecomparisonsarenadeamongthem.AcommondifficLy with

Ii

these methods is that they emphasize estimation of the 50% Point without

providing much information about the quality of the results.

The sole exception to this generalization is the Spearman-Kgrber

method (discussed by Finney, 1964, and Brown, 1961). It estimates the

50% point as a linear function of the number of positive responses at

each level. Since the number of positive responses at any level is a

binomial random variable, the variance of the estimate is a linear

function of binomial variances.

There has been no discussion on how to use this variance to con-

struct confidence intervals for small samples, and the difficulty is

acute for one observation per level, where one is not even sure how to

estimate the variance itself. Nonetheless, Finney (1964) recommends the

Spearman-Kgrber method for some cases of the sensitivity problem.

The other method in this group which Finney recommends estimates

the 50% point using a moving average (of the number of positive responses

per level) and linear interpolation. Approximate expressions for the

variance of this estimate have been developed (Harris, 1959), but none

of these appears satisfactory for small samples. This moving average

method is particularly unsuited for use with one observation per level.

Not only is estimation of the variance problematical, there is also a

real chance that its estimate of the 50% point will not be uniquely

defined in this case.



Experimental Appendix

Introduction

The conflict between the two- and three-dimensional aspects of a

picture has long been recognized, particularly by painters. The

experiment discussed in the main section was designed to study this

conflict systematically. A door or window, when photographed from an

angle, may give rise to an image in the form of a trapezoid whose bases

are vertical lines. To reconstruct the width of the door or window

from its image, one must consider several things. The two which will be

considered here are the distance between the bases (the width of the

image) and the angles between the sides and the bases (the linear per-

spective). If we simplify the picture to include only this trapezoid,

then its two- and three-dimensional aspects will be the two features

just described. By obtaining judgments about the width of the original

object as these features are varied, something may be learned about the

nature of the conflict mentioned above.

General Description

Each subject was seated about two feet in front of a rear-projection

screen. These were the instructions read to him:

In this experiment, you will be shown a series of computer-
generated pictures. Each of these shows two rectangular panels
which meet at the center of the picture. You will be asked to
indicate which of these panels appears wider to you by saying,
"left" or "right." The panels are never of the same width,
though they may be very similar. Also, no two pictures are
identical, although some are very similar.
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The first slide each subject saw is shown in Figure 2. The entire

collection of 80 slides actually consisted of four subsets. These were

constructed by choosing two standard panels, two comparison series, and

combining each of the standards with each of the comparisons. The

standards were both relatively flat in the picture plane and of moderate

width, while the comparisons were more sharply angled toward the subject

with widths varying systematically. (Thus, in Figure 2, the panel on the

right is the standard, while that on the left is the comparison.)

Since more or less independent judgments were desired, members of

the same series were not shown in immediate succession and the side on

which the standard panels appeared was varied. Once an order of

presentation had been chosen, it was held constant for all subjects.

In a more rigorous experiment, the order would have been varied randomly

for different subjects.

Equipment and Physical Specifications

A Kodak Carousel projector with zoom lens and remotely controlled

advance was used to show the slides. The rear-projection unit was manu-

factured by the Radiant Corporation. It has a 14-inch square mylar

screen, a sliding tray to hold the projector below and directly behind

the screen, and two mirrors, one of them adjustable, to direct the picture

from projector to screen.

During the experiment, the room was completely dark except for a

six-inch square lighted area in the center of the screen. The brightness

of this area was brought to a comfortable viewing level by operating the

projector at "low" and by using two pieces of Polaroid glass placed in
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front of the projection lens as a variable filter. After this adjust-

ment had been made, a Gossen footcandle meter was used to measure the

illuminance of the screen at 25 inches, the approximate viewing distance

of the subjects. The value arrived at in this way was 1.1 footcandles.

From slide to slide, the length of the central vertical line (see

Fig. 2) is kept constant. When the stimuli were produced, the ratio of

this length to the viewing distance was taken to be .1. With the length

of this vertical line at 2.5 inches in the projected image, the appro-

priate viewing distance is 25 inches.

In this kind of experiment, the usual procedure would be to provide

a small viewing aperture 25 inches away from the screen and directly in

front of it and to otherwise block the subject's forward view. This

arrangement would have the additional advantage of restricting the sub-

ject to monocular vision. In this way, the subject would have no

binocular information about the flatness of the screen to contradict

the impression of depth provided by the linear perspective.

Nonetheless, we allowed the subjects a free binocular view of the

stimuli. They were seated in chairs which put them at approximately

the correct distance and orientation, but no attempt was made to restrict

their movements or compensate for their varying heights. In part, this

was due to the nonrigorous nature of the experiment. It was also due to

the fact that this is the way we normally 'look at pictures.

Production of the Stimuli

As indicated in the instructions to the subjects, the slides used

for this experiment were generated with the help of a computer, the

IBM 7094 at Princeton University. It operates a cathode ray tube and a
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35 mm. camera together so that images appearing on the former are photo-

graphed on microfilm by the latter. The limits of image resolution in

the finished product are fixed by the CRT rather than the film. All

images must be built up on the face of the tube from a 1024 by 1024 square

matrix of points. This is far short of ideal, but seemed satisfactory

in the present case.

The Geometry of Perspective

To represent an object in perspective, the position of the object

must be established with respect to a picture plane and a viewing point

not in the plane. Imagine a line passing through the viewing point and

any point in the object. The intersection of this line with the picture

plane locates the representation of this part of the object.

In terms of a three dimensional coordinate system, it is convenient

to use the locus of points for which z = 0 (in other words, the x - y

plane) as the picture plane, and to place the viewing point at (0, 0, p),

along the z axis. If the object point is (x, y, z), its representation

is (x', y', 0), where x' = (p/(p - z))x and y' = (p/(p - z))y . This

obviously excludes any part of the object for which z = p .

The situation is represented in Figure 8. The values for x' and

y' are found with the help of similar triangles: y' and y are the

lengths of one set of corresponding sides, while x' and x are the

lengths of another set.

There are two opposing properties of perspective representation which

we may note at this point. The first is that any change in the position

of the object will, in general, result in a different representation.

Moreover, this new representation will not, in general, even be
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geometrically similar to the old one. That is, the relationships of the

parts of the representation will change as the object is moved.

On the other hand, different objects may give rise to the same

representation. In particular, a whole range of geometrically similar

objects, increasing in overall size as they are placed further away from

the viewing point, can be represented by a single figure on the picture

plane.

Rectangles in Perspective

Having considered the basic projective equations, we should realize

that they were not used directly to determine the stimuli for this

experiment. Since the figures to be represented were rectangles, con-

veniently aligned with the vertical axis of the picture plane, it was

possible to derive special projective equations applying to them.

Figure .9 provides a view of the situation from above (along the

y -axis of Figure 8) as well as one from in front (along the z -axis).

In the first of these views, BD is what can be seen of the rectangle

and BC is what can be seen of its projection. The rectangle is in-

clined from the picture plane by the angle e . Finally, A is the

"vanishing point" of the rectangle, that is, the point toward which the

top and bottom edges of its projection converge.

In the experiment, the projections were varied systematically. As

a result, the primary interest was in specifying the rectangles in terms

of their projections (and the viewing distance). Referring to Figure 9,

we want to find expressions for BD and e in terms of AB , BC , and

BP .
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Since triangles ACP and BCD are similar, BD/BC = AP /AC or

BD = BC(AP/AC) . If we label the variables of interest as x = BD ,

a = AB , b = BC , and p = BP , the equation becomes

x = (b/(a + b))(a2

problem is solved.

p2)1/2
In addition, e = arctan (p/a) , so the

Parameters of the Stimuli

Now it is possible to describe the stimuli more completely. As we

remarked earlier, the central vertical line (the common inside edge of

the rectangles) was fixed, and its ratio to p , the projecting distance,

was set at .1. Taking the length of the edge as 2.5 makes p = 25 .

We may remember that in the experiment each of two standard stimuli

is paired with each member of two comparison series. In the units set

above (which happen to be inches), standard one (S1) has a = 50,

b = 1.5 , while for
'2

S a = 25 , b = 1.5 . In other words, the

standards have the same projected width.

Let us use 0 to denote the angle by which the top (or bottom)

projected edge deviates from the horizontal. Then 0 for Sl is

arctan (1.25/50) = 1.43210° and, for S2 , 0 = 2.86241° .

Using the equations derived above, the rectangle represented by S1

has a width of 1.62820 and comes out of the picture plane at an angle of

26.5651° . That represented by S2 has x = 2.00124 and e = 45° .

We can summarize the above results in terms of an inverse projective

function F (b10) -4 (Xle)

For S
1

, F(1.51 1.43210°) = (1.62820, 26.5651°) .

For S
2 '

F(1.51 2.86421°) = (2.00124, 45.0000°) .
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The two comparison series (C1 and C2) may be similarly described.

For each of them, a (hence 0 ) is fixed while b is varied systemati-

cally. In the case of C1 , a = 2.5 (0 = 26.5651°) and

b = .501.55,...,1.45 . With C
2

, a = 5 (0 = 14.0362°) and

b = .75,.80,...,1.70 . Thus each series has 20 components and the com-

ponents in each case are generated by changing b in steps of .05.

We can easily describe the corresponding rectangles with the help

of a modified version of F .

For C1 , F(.50,...11.45; 26.5651°) = (4.18745" efoy9. 22299; 84.2894°)

For C
2

, F( 75 14.0362 °) = (3.32544,...,6.46890; 78.6901°)

Finally, the stimulus in Figure 2 is S1 paired with an element of

C
1

which has b = 1.15 .

Data

The data for all 19 subjects 3 are found in Tables 12 and 14,

immediately following this section. Table 12 gives the judgments in the

order they were made, with an L if it was the left panel that appeared

wider and an R if it was the right panel. Table 13 provides the code

for interpreting these judgments. It may be read as follows: 1 Sl;C1,14 R

means that the first judgment of each subject was made between S1 and

the 14th element of C
1

(ordered so that the first element is the

smallest) with the standard on the right.

Table 14 is the result of applying this code to Table 12. For ease

(hopefully) of interpretation, the decoded data for each subject are

3
Actually, there were only 17 subjects. Subject 7 wanted to try

again, and, thus, become subject 8 as well. Subject 18 became subject
19 using a different interpretation of the instructions.
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Table 12

Raw Data from Experiment with Each Subject's Judgment for

Each of the 80 Slides, L and R Indicating Which

Rectangle (Left or Right) Appeared Wider

SUBJECT NUMBER 1 SUBJECT NUMBER 2

1 L. 2 1 R 4 1 R 6 1 L 1 L 2 1 L 41 R 6 1 L
2 R 22 L 42 L 62 R 2 R 22 R 42 L 62 R
3 R 23 R 43 L 63 R 3 R 23 R 43 R 63 R
4 L 24 R 44 R 64 L 4 L 24 R 44 R 64 R
5 L. 25 L 45 L 65 R 5 L 25 L 45 R 65 R
6 R 26L 46L 66R 6 R 26L 461. 66 R
7 L. 27L 47L 67 R 7 L 27L 47L 67 R
8 R 28 R 48 L 68 L 8 R 28 R 48 L 68 L
9 R 29 L 49 R 69 R 9 R 29 L 49 R 69 R
10 L 30 L 50 L 70 R 10 L 30 L 50 L 70 R
11 R 31 L 51 L 71 R 11 L 31 R 51 L 71 R
12L 32 R 52L 72L 1 2 L 32L 52L 72 R
13L 33 R 53 R 7 3 L 1 3 L 33L 53L 7 3 L
1 4 R 34 L 54 R 74 R 1 4 R 34 R 54 R 74 R
1 5 R 35 L 55 L 75 R 1 5 R 35 L 55 R 75 R
16 L.. 36 L 56 L 76 R 1 6 L. 36 L 56 L 76 R
17 L 37 R 57 L 77 R 1 7 R 37 R 57 L 77 R
18 L 38 L 58 L 78 L 18 L 38 L 58 R 78 L
19 R 39 L 59 R 79 R 19 R 39 1.. 59 R 79 R
20 L 40 R 60 R 8 0 R 20 L 40 R 60 R 8 0 R

SUBJECT NUMBER 3 SUBJECT NUMBER 4

1 R 2 1 L 41 L 6 1 L 1 L 2 1 L 41 R 6 1 L
2 R 22 R 42 L 62 R 2 R 22 L 42 L 62 R
3 L 23 L 43 R 63 L 3 R 23 L 43 R 63 R
4 L 24 R 44 L ----6 4 R 4 L 24 R 44 L 64 R
5 L. 25 R 45 R 65 L 5 L 25 L 45 L 65 R
6 R 26 L 46 L 66 R 6 R 26 L 46 L 66 R
7 L 27 R 47 R 67 L 7 R 27 1.. 47 L 67 R
8 R 28 R 48 L 68 L 8 R 28 R 48 L 68 L
9 R 29 L 49 L 69 L 9 R 29 L 49 R 69 R
10 L 30 L 50 R 70 R 10 L 30 L 50 L 70 R
11 L 31 R 51 L 71 L 11 L 31 R 51 L 71 R
12 L 32 L 52 L 72 R 12 L 32 L 52 L 72 R
1 3 R 33 L 53 L 73 R 1 3 L 33 L 53 L 73 L
1 4 R 34 R 54 1. 74 R 1 4 R 34 R 54 R 74 R
15 L. 35 L 55 R 75 R 1 5 R 35 L 55 R 75 R
16 L 36 L 56 L 76 R 1 6 L 36 L 56 L 76 R
17 R 37 R 57 R 77 R 1 7 R 37 R 57 L 77 R
18 L 38 L 58 R 78 L 18 L 38 L 58 R 78 L
19 L. 39 L 59 R 79 L 19 R 39 L 59 R 79 R
20L 40 R 60L 80 R 20L 40 R 60 R 80 R
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Table 12 (Contd)

SUBJECT NUMBER 6

1 R 21 1. 41 R 61 L 1 L 21 1. 41 R 61 L
2 R 22 R 42 L 62 R 2 R 22 L. 42 L 62 R3 L 23L 43 R 63L 3 R 23 R 43L 63 R
4 L. 2 4 L. 44L 64R 4 L 24R 44R 64 1.

65 R5 L 25 R 45 R 65 L 5 L 25 L. 45 L.
6 R 26 L. 46 L 66 R 6 R 26 L 46 L 66 R
7 L. 27 R 47 R 67 R 7 L 27 L 47 L 67 R
8 R 28 R 48 L 68 L 8 R 28 R 48 L 68 L
9 R 29 L. 49 R 69 R 9 R 29 L 49 R 69 R
10L 30L 50L 70 R 10L 30L 50L 70 R
11 L. 31 R 51 L 71 R 11 R 31 L 51 R 71 R
12 L 32 L. 52 L 72 R 12 L 32 L 52 L 72 R
13 R 33 L 53 L 73 L 13 L 33 R 53 L 73 L
14R 34L 54R 74R 14R 34L 54R 74R
15 L 35 L. 55 R 75 R 15 R 35 L. 55 L 75 L
16 L 36 L. 56 L 76 R 16 L 36 L 56 L 76 R
17 R 37 R 57 L 77 R 17 R 37 R 57 L 77 R
18 1. 38 L 58 R 78 1.. 18 L 38 L. 58 L 78 L.
19 L 39 L 59 R 79 L 19 R 39 R 59 L. 79 R
20 L 40 R 60 R 80 R 20 L 40 R 60 R 8 0 R

SUBJECT NUMBER 7 SUBJECT NUMBER 8

1 L. 21 R 441 R 61 L. 1 L 21 R 41 R 61 L.
2 R 22 L. 42 L 62 R 2 R 22 L 42 L 62 R
3 R 23 R 43 L 63 R 3 R 23 R 43 R 63 R
4 L 24 R 44 R 64 L 4 L 24 R 44 R 64 R
5 R 25 1. 45 L 65 R 5 R 25 L 45 R 65 R
6 R 26 R 46 L 66 R 6 R 26 R 46 L 66 R
7 R 27 L 47 L 67 R 7 L 27 L 47 L 67 R
8 R 28 R 48 L 68 R ES R 28 R 48 L 68 R
9 R 29 L. 49 R 69 R 9 R 29 L 49 R 69 R
10 L 30 1. 50 L 70 R 10 L 30 R 50 L 70 R
11 R 31 L. 51 L 71 R 11 R 31 R 51 L 71 R
12 L 32 R 52 L. 72 R 12 L 32 R 52 L. 72 R
13 L 33 R 53 R 73 L. 13 L 33 R 53 R 73 L
14 R 34 L 54 R 74 R 14 R 34 L 54 R 74 R
15 R 35R 55L 75L 15 R 35 R 55L 75L
16 L 36 L 56 R 76 L 16 L 36 L 56 L 76 R
17 R 37 R 57 L 77 L 17 R 37 R 57 L 77 R
18 R 38 L 55 L 78 L. 18 R 38 R 58 L 78 1.19 R 39 R 59 R 79 R 19 R 39 R 59 L 79 R20 L 40 R 60 R 80 R 20 L. 40 R 60 R 8 0 R



SUBJECT NUMBER 9

-72-

Table 12 (Contd)

SUBJECT N LMBER 10

1 R 21 L. 41 R 61 L.

2 R 22 R 42 L 62 R
3 R 23 I.. 43 R 63 I..
4 L 24 R 44 L.. 64 R
5 L 25 R 45 R 65 L
6 R 26 L. 46 L 66 R
7 L 27 R 47 R 67 R
8 R 28 R 481. 68 L.
9 R 29 L 49 R 69 R
10 L 30 L 50 L 70 R
11 L. 31 R 51 L 71 R
12 L 32 L 52 L 72 R
13R 33L 531. 7 3 L.
14 R 34 R 54 R 74 R
15 R 35 L. 55 R 75 R
16 L 36 I- 56 L 76 R
17 R 37 R 57 L 77 R
18 L. 38 L.. 58 R 78 L.
19 L. 39 L 59 R 79 L
20 L 40 R 60 L SO R

1 L 21 R
2 R 22 L
3 R 23 R
4 L 24 R
5 R 25 L
6 R 26 R
7 R 27 1..
8 R 28 R
9 R 29 L
10 L 30 R
11 R 31 L
12L 32R
1 3 L 33 R
1 4 R 34L
1 5 R 35R
16 L 36 L
1 7 R 37R
18 R 38 R
19 R 39 R
20L 40L

41 R 61 1..

42 L 62 R
43L 63A
44 R 64 L
45 1.. 65 R
46 L 66 R
47 L. 67 R
48L 68L
49 R 69 R
50 1.. 70 R
51 R 71 R
52L 72L
53 R 73L
54R 74R
55 L 75 L
56 R 76L
57 L. 77 R
58 1.. 78 R
59 L 79 R
60 R SO L

SUBJECT NUMBER 11 SUBJECT NUMBER 12

1 L 21 1.. 41 R 61 L.
2 R 22 R 42 L 62 R
3 R 23 R 43 R 63 R
4 L 24 R 44 L 64 R
5 L 25 L 45 R 65 R
6 R 26 L 46 L 66 R
7 L 27 L 47 R 67 R
8 R 28 R 48 L 68 L
9 R 29 L 49 R 69 R
10 L 30 L.. 50 L 70 R
11 L. 31 R 51 1.. 71 R
12 L. 32 L 52 L 72 R
13L 33L 53L 73L
14 R 34 L 54 R 74 R
15 R 35 I- 55 R 75 R
16L 36 L 56L 76 R
17 R 37 R 57 L 77 R
18 L 38 L 58 L 78 L
19 R 39 L 59 R 79 R
20 L 40 R 60 R 80 R

1 R 21 L 41 R 61 1..

2 R 22 R 42 L 62 R
3 R 23 L 43 R 63 R
4 L 24 R 44 R 64 R
5 L 25 R 45 R 65 I-
6 R 26 1.. 46 L 66 R
7 L 27 R 47 R 67 R
8 R 28 R 413 L. 68 L
9 R 29 L 49 R 69 R
10 1.. 30 L 50 L 70 R
1 1 L 31 R 51 1.. 71 R
1 2 L. 32 L. 52 L. 72 R
1 3 R 33L 53L 73L
1 4 R 34 R 54 R 74 R
1 5 R 35 L 55 R 75 R
1 6 L. 36L 56L 76 R
1 7 R 37 R 57 L 77 R
18 L 38 L 58 R 78 L
19 L 39 L 59 R 79 R
20L 40 R 60L 80 R
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Table 12 (Contd)

SUBJECT NUMBER 13 SUBJECT N UMBER 14

1 L 21 R 41 R 61 L
2 R 22 L 42 1. 62 R
3 R 23 R 43 L. 63 R
4 L 24 R 44 R 64 I.
5 L 25 L. 45 L. 65 R
6 R 26 L 46 L 66 R
7 L 27 L. 47 L 67 R
8 R 28 R 48 L. 68 R
9 R 29 L 49 R 69 R
10 L 30 I.. 50 L. 70 R
11 R 31 L 51 R 71 R
12L 32L 52L 72L
13 L 33 L 53 R 73 L
14 R 34 1.. 54 R 74 R
15 R 35 I. 55 L 75 L
16 1. 36 L 56 R 76 L
17 1. 37 R 57 L 77 R
18 R 38 1.. 58 1.. 78 R
19 R 39 R 59 L 79 R
20 L 40 L 60 R 80 L

1 L 21 1. 41 R 61 1.
2 R 22 R 42 L. 62 R
3 R 23 L 43 R 63 I.
4 L 24 R 44 L 64 1.
5 L 25 L. 45 L 65 R
6 R 26 I. 46 L 66 R
7 L 27 R 47 L. 67 R
8 R 28 R 48 L 68 I.
9 R 29 L. 49 R 69 R
10 L 30 1. 50 L 70 R
11 L 31 R 51 I. ,71 R
12L 321. 52L 72 R
13L 33L 53L 73L
14 R 34 L 54 R 74 R
15 R 35 R 55 L 75 L.
1 6 I. 36L 56L 76 R
17 R 37 R 57 L 77 R
18 L. 38 L. 58 L 78 L
19 R 39 L 59 R 79 R
20 L 40 R 60 R S 0 1.

SUBJECT NUMBER 15 SUBJECT NUMBER 16

1 L 21 I.. 41 R 61 L
2 R 22 L 42 L 62 R
3 R 23 R 43 R 63 R
4 L 24 R 44 R 64 L
5 L 25 I.. 45 R 65 R
6 R 26 L 46 L 66 R
7 L. 27 L. 47 L 67 R
8 R 28 R 43 L 68 1.
9 R 29 L 49 R 69 R
10 L 30 1. 50 L 70 R
II R 31 R 51 L 71 R
12 1. 32 R 52 I. 72 R
13L 33L 53L 73L
14 R 34 1. 54 R 74 R
15 R 35 L. 55 L. 75 L.
16L 36L 56L 76L
17 R 37 R 57 L 77 R
IS L 38 L 58 L 78 L
19 R 39 L 59 R 79 R
20 1. 40 R 60 R SO 1.

1 L. 21 L 41 R 61 L
2 R 22 L. 42 I. 62 R
3 R 23 R 43 L 63 R
4 L 24 R 44 R 64 L
5 L 25 L 45 L 65 R
6 R 26 1. 46 L 66 R
7 L 27 L. 47 L 67 R
8 R 28 R 48 L 68 L.
9 R 29 L. 49 R 69 R
10 L 30 I. 50 L 70 R
11 I. 31 L 51 L 71 R
12 L 32 I. 52 L 72 L
13L 33L 53L 73L
14 R 34 I. 54 R 74 R
15 R 35 L 55 L 75 L
16 L 36 1.. 56 L 76 L.
17 R 37 R 57 L 77 R
IS L 38 L 58 L 78 I.
19 R 39 R 59 R 79 R
20 L 40 R 60 R 8 O 1.
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Table 12 (Contd)

SUBJECT NUMBER 17 SUBJECT NUMBER 18

1 R 21 L 41 L 61 R 1 R 21 L 41 L 61 L
2 L 22 R 42 L 62 R 2 L 22 R 42 L 62 R
3 L 23 L 43 R 63 L 3 I. 23 L 43 R 63 L
4 L 24 R 44 L 64 R 4 L 24 L 44 L 64 R
5 L. 25 R 45 R 65 L 5 L 25 R 45 R 65 L
6 R 261. 46L 66 R 6 R 26L 46L 66 R
7 L 27 R 47 R 67 R 7 L 27 R 47 R 67 L.
8 R 28 R 48 L 68 L 8 R 28 R 48 L 68 L
9 R 29 L 49 R 69 R 9 L 29 R 49 L 69 L
10 L 30 L 50 R 70 R 10 R 30 L 50 R 70 R
11 L 31 R 51 L 71 L 11 L 31 R 51 L 71 L
12L 32L 52L 72 R 12L 32L 52L 72 R
13 R 33 L 53 L 73 R 1 3 R 33 L 53 L 73 R
14 R 34 R 54 L 74 R 1 4 R 34 R 54 L 74 L
15 L 35 L 55 R 75 R 1 5 L 35 L 55 R 75 R
16L 36L 56L 76 R 1 6 L 36L 56L 76 R
17 R 37 R 57 R 77 R 1 7 R 37 R 57 R 77 R
18 L 38 L 58 R 78 L 18 L 38 L 58 R 78 L
19 L 39 L 59 R 79 L 19 L 39 L. .59 R 79 L
20 L 40 R 60 L 80 R 20 L 40 R 60 L 80 R

SUBJECT NUMBER 19

1 L 21 L 41 R 61 L
2 R 22 R 42 L 62 R
3 R 23 L 43 R 63 R
4 L 24 R 44 L 64 R
5 L 25 L 45 R 65 R
6 R 26 L 46 L 66 R
7 L 27L 47L 67 R
8 R 28 R 48 L 68 L
9 R 29 L 49 R 69 R
10 L 30 L 50 L 70 R
11 L 31 R 51 L 71 R
12 L 82 L 52 L 72 R
13L 33L 53L 73L
14 R 34 R 54 R 74 R
15 R 35 L 55 L 75 R
16 L. 36 R 56 L 76 R
17 R 37 R 57 L 77 R
18 L 38 L 58 L 78 L
19 R 39 L 59 R 79 R
20 L 40 R 60 R 80 R
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Table 13

Arrangement of Slides for Experiment, Showing Which Standard

Rectangle Was Paired with Which Comparison, and

on Which Side the Standard Appeared

1 S1;C1,14 R 21 S1;C1,5 L 41 S2;C1,14 L 61 S2;C1,19 R

2 S2; C2,13 L 22 S2;C2,11 R 42 S2;C2,I9 R 62 S1;C2,19 L,

3 S2;C1,16 L 23 SI;C1,9 L 43 S1;C1,4 R 63 S2;CI,I1 L

4 SI;C2,1/ R 24 S1;C2,12 L 44 S2;C2,10 L 64 S1;C2,8 k

25 S1;C1,13 R 45 51;CI,6 R 65 S1;C1,10 L

26 S1;C2,2 L 46 52:C2,18 R 66 S2;C2,3 R

27 S2;CI,I3 Ft 47 S2;CI,10 R 67 S2;C1,20 L

28 S2;C2,1 R 48 S2;C2,2 L 68 S2;C2,8 L

29 .52;CI,13 R 4; S1;C1,17 L 69 S1;CI,19 L

Si;C2,14 R 30 S2;C2,6 L 50 SI:C2,13 R 70 S21C2,5 R

11 S2;C1,6 L 31 S2:C1,) R 51 SI:C1,1 L 71 S2;C1,12 L

12 S2;C2,I6.R 32 S1 ;C2,7 L 52 S2;C2,20 R 72 S1;C2,6

13 S2;CI,15 R 33 S2;C1,5 L 53 S2;C1,4 L. 73 SI;CI,15 R

14 :,1; C2,15 L 34 S1;C2,11 k 54 S2;C2,14 L 74 SI;C2,16 L

15 S1;C1,16 L 35 S1;C1,2 L 55 S1;C1,7 k 75 SI:CI,8 R

16 S1;C2,20 R 36 S2;C2,I7 Ft 56 S1 :C2,5 L 76 S2;C2,9 R

17 S2;C1,3

IS S2;C2,7

19 SI;CI,12

20 52; C2,15

5 S2;C1,1 L

6 S1;C2,3 R

/ S1;C1,3 L

8 S1; C2,1;{ L

9 Sl;Clolg L

R .57 L 57 S2;C1,17 h 77 S2;C1,2

L 38 SI;C2,1 L 58 SI;C2,10 R 78 S2;C2,4

L 33 S2:CI,7 L 59 S2:C1,8 R 79 SI;C1,11

R 40 SI;C2,4 h 60 S2;C2,I2 L 80 S1;C2,9

R

L

L

R
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SUBJECT NUMBER 9

Cl C2
B S S2 S l S2

0.50
0.55

0645
0.70
0.75
0.80
0.85
0.90
0.95

.00

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.40

.45

.70

110

SUBJECT NUMBER 11

Cl
S S2

Table 111. (Contd)

SUBJECT NUMBER 10

CI

0.50
0.55

0.45
0.70
0.75
0.80
0.85
0.90
0695

.00

.05

.10

.15

.20

.25

.30
635
.40
.45
.50
.55

.70

C2
S2 S 1 S2

SUBJECT NUMBER 12

B S
C1 C2

S2 SI S2

0.50
0.55
0.40
0.0
0.70
0.75
0.80
0.85
0.90
0.95

.00

.05

.10

.15
.20
.25
.30
.35
.40
.45
.50
.55
.50
.65
.70

-

1

I
-1

1

I
1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.50
0.55
0.60

0.70
0.75
0.80
0.85
0.90
0.95

.00

.05

.10

.15

.20

.25

.30

.35

.40
.45
.50
.55

.65
.70

IND

IND

110

IND

IND

IND

f



K
J

t

00
00

00
00

00
 W

co C
.
.
3
,
7
,
,
,
c
o
o
s
c
v
M
s
-
s
-
o
o
t
o
w
W
W
-
4
-
4
M
u
l

W
o
u
v
o
u
l
o
u
l
o
u
v
o
u
l
o
u
l
o
u
l
o
u
l
o
u
v
o
u
v
o
u
l
o
v
i
o

c
.
. rn C
)

8-
4

1
1
1
1
1
1

U
)

X C
0

a
.

P
I

1
U
)

23
N

5
5

5
5

5
5

5
I

0
1

.
.
.

0 N
N IN

0
0
0
0
0
0
0
0
0
0
 
W

U
l C

-
.
.
1
2
4
A
W
C
O
N
N
w
s
-
0
0
W
4
0
0
1
0
-
4
-
4
A
A
1
/
4
1
1
%
/
1

W
0
%
/
1
0
0
 
1
0
%
/
1
0
U
0
0
%
/
1
0
B
O
U
I
O
U
I
O
U
1
0
P
O
U
I
O
U
1
0

C
.
. 0

I
I

y
2 C

A
w3 m

I
I
I
I
I
I
I
 
W

1
3

N

1
1

I
1

1
1
1
1
1
1
1
1

IM
O

.7
1

,d
r

0
0
0
0
0
0
0
0
0
0
 
W

W C
.
.
.
1
.
A
A
W
W
W
I
N
/
0
0
W
W
0
0
1
-
.
1
-
.
1
A
A
U
W
0

W
O
U
D
O
U
1
0
%
/
1
0
%
/
6
0
%
/
1
.
4
0
%
/
1
0
%
/
6
0
%
/
6
0
U
1
O
U
I
O
U
1
0

C
.
. 0

1
1

I
1

1
I

. 4

1
1

W
= C

0
 
Wa

.
 
m

I
I

I

N01
X
)

W .
.
.
.
.

0 N
W N

ri 9 ii

I
-
3
P H M& -P

"

--
C

is
o

00
00

00
00

00
 W

w
0

C
d

-
.
1
4
A
.
A
0
I
W
N
N
.
-
.
.
.
0
0
4
W
0
3
0
3
-
4
-
4
3
1
.
7
.
U
o
U
t

W
pi

,
O
U
I
O
U
I
O
U
I
O
U
I
O
U
I
C
I
V
I
O
U
D
O
P
o
U
p
o
U
D
O
U
1
0
%
/
1
0

C
.
.

...
.

re
s .

I
C

1
1

I
y

2 C 3
0
 
W

.
.
.
.
m

I
I

1
0
1
1
1
1
1
1
1
 
W

2
/

C
O

1
0 I
.
.

1
1
1
1
1
1
1
1
1
1
1

N
.
N

o N

h b ii



-80-

SUBJECT NUMBER 17

Cl
SI S2

0.50. 1
0.55 -1 1

0.60 1 I

C2
Si S2

Table 14 (Contd)

SUBJECT NUMBER 18

C1
B Si S2

0.50 I 1

0.55 -1 1

0.50 I 1

C2
SI S2

0.65 1 1 0.65 -1 1

0.70 1 0.70 1 I
0.75 l I I 1 0.75 I 1 -1
0.80 1 0.80 -1 1 I

0.85 1 0.85 1 I I
0.90 1 1 1 1 0.90 1 1 I
0.95 1 1 1 0.95 I I I
1.00 1 .00 -.1 I -1
1.05 1 I 1 .05 1 1 I
1.10 1 1 -1 .10 -1 I -1
1.15 -1 1 1 1 .15 I I I

1.20 1 1 1 1 .20 -1 I 1

1.25 I 1 .25 -1 1 1

1.30 1 1 1 1 .30 -1 -1 1

1.35 1 1 1 1 .35 1 1 1

1.40 1 I 1 1 .40 1

1.45 1 1 1 1 .45 1 1

1.50 1 1 .50
1.55 1 1 .55 1

1.60 1 1 .60 1

1.65 1 1 .65 1

1.70 1 1 .70

SUBJECT NUMBER

CI

19

C2
B Si S2 Si S2

0.50 ail 1

0.55 1 1

0.150 1 I
0.65 I 1
0.70 1
0.75 1 1 1

0.80 1 1 1 1

0.85 1 1 1 1

0.90 1 1 1

0.95 1 1 1 1

1.00 1 1 1 1

1.05 1 1 1 -1
1.10 1 1 1 -1
1.15 1 1 -1
1.20 1 1 1 1
1.25 1 1 1 1

1.30 1 1 1 1

1.35 1 1 1 1

1.40 1 1 1 1

1 .45 1 1 1 1

1.50 1 1

1.55 1 1

1.60 1 1

1.55 1 1

1.70 1 1
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placed in a lopsided 3-way table. The entry for subject number 1 in row

.50, column S1 and layer Cl is -1. This means that the subject judged

S
1

wider than the first element of C
1

(which has b = .50). An entry

of 1 would mean that the opposite judgment occurred. To give one more

example from the data of subject 1, consider the entry for row 1.55,

column S2 and layer C2, which happens to be 1. This means that the

element of C2 with b = 1.55 (the 17th) was judged wider than S2 .

Analysis

To analyze these data we will apply the countback method for con-

structing confidence limits. Before deciding on a value for c

however, we should consider the way in which we would like to use the

confidence limits.

In terms of an overall explanation of each subject's behavior, there

are two natural hypotheses to apply. We may call them 2D and 3D. The

2D hypothesis is that subjects ignore the perspective cues and simply

match the widths of the projected image. In the 3D hypothesis, it is

assumed that the subjects treat the images as though they were the

objects which generated them. We will interpret these hypotheses as

giving locations for the 50%point in each of the four series.

The instructions attempted to direct the subjects toward 3D, but

there were subjects who spontaneously reported their interpretation in

terms of 2D.
4

On these grounds alone, we might expect to find some subjects

of each type.

4
Subject 18 was one of these.
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An interesting question arises as to whether there are any subjects

for whom neither 2D nor 3D is applicable. Preliminary observations

suggested that this would be the most common situation. Consequently,

the comparison series were chosen to be most appropriate to responses

representing a compromise between 2D and 3D. In fact, perfect 3D

behavior would require a subject to report every element in C1 and

C2 as wider than either S1 or S2 . On the other hand,a perfect 2D

subject would find S1 and S2 wider than every element in C1 and

wider than all but the largest five in C2 . The effect of this choice

of series is that confidence intervals for such subjects may be open-

ended on one side or the other.

Returning to the discussion of confidence limits, there are many

ways they could be used to test these hypotheses for each subject. The

way used here is to reject a given hypothesis for a subject if at least

three out of the four predicted 50% points do not fall between their

appropriate confidence limits.

If the confidence coefficient for each confidence interval taken

separately is 1 - P , what is the probability that at least three of

the four fail to contain their 50% point for at least one of N subjects?

For any given subject, the probability of this occurrence is just the

probability that none, or only one, contains its 50% point, or

P + 3(1 - P) = 4133 - 3134 . The probability of this happening for at

least one of the N subjects must be at most NO.P3 - 31)4) . (This

would be the exact value only if occurrences for individual subjects were

mutually exclusive events.)
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In the present case, with N = 19 , confidence limits were found

using c = 3 . (These are reproduced in Table 15.) For this value of

c , we know that 1 P is greater than .875. Thus, the probability of

three or four 50% points falling outside their confidence intervals for

at least one of the 19 subjects is less than .134521. In view of the

conservative nature of the lower bound on 1 - P , this is quite a

reasonable value. (It may be noted that, if 1 - P were in fact .95 for

each subject, the probability would drop to .009144.)

Looking at Table 15, we can see that possible 3D subjects are 7, 8,

10, and 13. (Subject 8 is actually subject 7 trying again.) 3D must be

rejected for all the others. Possible 2D subjects are 3, 17, and 18.

Consequently, subjects 1, 2, 4, 5, 6, 9, 11, 12, 140 15, 16, and 19 are

neither 2D nor 3D, but somewhere in between.
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Table 15

Countback Confidence Limits for the 50% Point of Each

of the Four Series for Each Subject; Given in

Terms of the Comparison Widths, with c = 3

Subject S
1
vs C

1
S
2
vs C

1
S
1
vs C

2
S
2
vs C

2

1 ( .5o, 1.00) ( -00, 1.00) ( .85, 1.30) (1.00, 1.35)

2 ( .70, 1.05) ( .75, 1.10) (1.101 1.45) (1.05, 1.4o)

3 (1.20, 00 ) (1.20, 00 ) (1.15, 1.50) (1.20, 1.55)

4 ( -00, 1.05) ( .75, 1.10) (1.10, 1.45) (1.05, 1.40)

5 (1.05, 1.44) ( .90, 1.40) (1.10, 1.45) (1.101 1.45)

6 ( _00, .85) ( .5o, .85) ( .95, 1.30) (1.00, 1.35)

7 ( _00, .7o) ( -00, 1.00) ( -00, 1.30) ( .85, 1.20)

8 ( 1 .90) ( -00, 1.05) ( -00 , 1.3o) ( .85, 1.30)

9 (1.00, 1.35) ( .90, 1.35) (1.10, 1.45) (1.15, 1.50)

10 ( -00, .65) ( -001 75) ( 1.00) ( 75, 1.25)

11 ( .70, 1.05) ( .80, 1.15) (1.00, 1.35) (1.10, 1.45)

12 ( .85, 1.30) ( .85, 1.35) (1.101 1.45) (1.051 1.45)

13 ( -00 .75) ( -001 .85) ( .75, 1.20) ( :751 1.15)

14 ( -00 , 1.05) ( .80, 1.25) ( .90, 1.25) (1.101 1.45)

15 ( .60, .95) ( .60, 1.05) ( .85, 1.20) ( .95, 1.30

16 ( .5o, .85) ( .65, 1.00) ( .85, 1.20) ( .95, 1.30)

17 (1.101 1.45) (1.20, ) (1.15, 1.5o) (1.25, 1.60)

18 (1.25, 00 ) (1.25, 00 ) (1.30, 1.65) (1.25, 1.60)

19 ( .65, 1.05) ( .75, 1.10) (1.051 1.40 (1.15, 1.70)
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Recent Applications of Maximum Likelihood

Techniques to Sensitivity Data
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